Magnificent Magnification: Exploiting the other half of the lensing signal
Abstract: We describe a new method for measuring galaxy magnification due to weak gravitational lensing. Our method makes use of a tight scaling relation between galaxy properties that are modified by gravitational lensing, such as apparent size, and other properties that are not, such as surface brightness. In particular, we use a version of the well-known fundamental plane relation for early type
galaxies. This modified "photometric fundamental plane" replaces velocity dispersions with photometric galaxy properties, thus obviating the need for spectroscopic data. We present the first detection of magnification using this method by applying it to photometric catalogs from the Sloan Digital Sky Survey. This analysis shows that the derived magnification signal is comparable to that available from conventional methods using gravitational shear. We suppress the dominant sources of systematic error and discuss modest improvements that may allow this method to equal or even surpass the signal-to-noise achievable with shear. Moreover, some of the dominant sources of systematic error are substantially different from those of shear-based techniques. Thus, combining the two techniques addresses the major weaknesses of each and provides a substantial improvement over either method used in isolation. With this new technique, magnification becomes a necessary measurement tool for the coming era of large ground-based surveys intending to measure gravitational lensing.
Comment: By using tight correlations between properties that change and properties that do not change through lensing, they can suppress the intrinsic noise of magnification measurements, which is pretty neat.